Genomic Prediction of Breeding Values when Modeling Genotype × Environment Interaction using Pedigree and Dense Molecular Markers

نویسندگان

  • Juan Burgueño
  • José Crossa
چکیده

Genomic selection (GS) has become an important aid in plant and animal breeding. Multienvironment (multitrait) models allow borrowing of information across environments (traits), which could enhance prediction accuracy. This study presents multienvironment (multitrait) models for GS and compares the predictive accuracy of these models with: (i) multienvironment analysis without pedigree and marker information, and (ii) multienvironment pedigree or/and marker-based models. A statistical framework for incorporating pedigree and molecular marker information in models for multienvironment data is described and applied to data that originate from wheat (Triticum aestivum L.) multienvironment trials. Two prediction problems relevant to plant breeders are considered: (CV1) predicting the performance of untested genotypes (“newly” developed lines), and (CV2) predicting the performance of genotypes that have been evaluated in some environments but not in others. Results confi rmed the superiority of models using both marker and pedigree information over those based on pedigree information only. Models with pedigree and/or markers had better predictive accuracy than simple linear mixed models that do not include either of these two sources of information. We concluded that the evaluation of such trials can benefi t greatly from using multienvironment GS models. J. Burgueño and J. Crossa, Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, México D.F., México; G. de los Campos, Dep. of Biostatistics, Univ. of Alabama at Birmingham, Ryals Public Health Bldg. 443, Birmingham, AL 35294; K. Weigel, Dep. of Dairy Science, Univ. of Wisconsin, Madison, WI 53706. Received 3 June 2011. *Corresponding author ( [email protected]). Abbreviations: Bayesian LASSO, Bayesian Least Absolute Shrinkage and Selection Operator; CV, cross-validation; D, diagonal; FA, factor analytic model; GE, genotype × environment interaction; GS, genomic selection; I, identity matrix; M, molecular marker; P, pedigree; PM, pedigree + molecular marker; REML, restricted maximum likelihood; UN, unstructured. Published in Crop Sci. 52:707–719 (2012). doi: 10.2135/cropsci2011.06.0299 Freely available online through the author-supported open-access option. © Crop Science Society of America | 5585 Guilford Rd., Madison, WI 53711 USA All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Published March, 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers.

The availability of dense molecular markers has made possible the use of genomic selection (GS) for plant breeding. However, the evaluation of models for GS in real plant populations is very limited. This article evaluates the performance of parametric and semiparametric models for GS using wheat (Triticum aestivum L.) and maize (Zea mays) data in which different traits were measured in several...

متن کامل

Comparing Different Marker Densities and Various Reference Populations Using Pedigree-Marker Best Linear Unbiased Prediction (BLUP) Model

In order to have successful application of genomic selection, reference population and marker density should be chosen properly. This study purpose was to investigate the accuracy of genomic estimated breeding values in terms of low (5K), intermediate (50K) and high (777K) densities in the simulated populations, when different scenarios were applied about the reference populations selecting. Af...

متن کامل

Genomic Prediction of Quantitative Traits in Plant Breeding Using Molecular Markers and Pedigree

ABSTRACT The availability of thousands of genome wide molecular markers has made possible the use of genomic selection in plants and animals. However, the evaluation of models for genomic selection in plant breeding populations is very limited. In this study, we provide an overview of several models for genomic selection, whose predictive ability we investigated using two plant data sets. One d...

متن کامل

From Genotype × Environment Interaction to Gene × Environment Interaction

Historically in plant breeding a large number of statistical models has been developed and used for studying genotype × environment interaction. These models have helped plant breeders to assess the stability of economically important traits and to predict the performance of newly developed genotypes evaluated under varying environmental conditions. In the last decade, the use of relatively low...

متن کامل

Comparison of Single and Multi-Step Bayesian Methods for Predicting Genomic Breeding Values in Genotyped and Non-Genotyped Animals- A Simulation Study

     The purpose of this study was to compare the accuracy of genomic evaluation for Bayes A, Bayes B, Bayes C and Bayes L multi-step methods and SSBR-C and SSBR-A single-step methods in the different values of π for predicting genomic breeding values of the genotyped and non-genotyped animals. A genome with 40000 SNPs on the 20 chromosom was simulated with the same distance (100cM). The π valu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012